169 research outputs found

    A large-scale proteogenomics study of apicomplexan pathogens-Toxoplasma gondii and Neospora caninum

    Get PDF
    Proteomics data can supplement genome annotation efforts, for example being used to confirm gene models or correct gene annotation errors. Here, we present a large‐scale proteogenomics study of two important apicomplexan pathogens: Toxoplasma gondii and Neospora caninum. We queried proteomics data against a panel of official and alternate gene models generated directly from RNASeq data, using several newly generated and some previously published MS datasets for this meta‐analysis. We identified a total of 201 996 and 39 953 peptide‐spectrum matches for T. gondii and N. caninum, respectively, at a 1% peptide FDR threshold. This equated to the identification of 30 494 distinct peptide sequences and 2921 proteins (matches to official gene models) for T. gondii, and 8911 peptides/1273 proteins for N. caninum following stringent protein‐level thresholding. We have also identified 289 and 140 loci for T. gondii and N. caninum, respectively, which mapped to RNA‐Seq‐derived gene models used in our analysis and apparently absent from the official annotation (release 10 from EuPathDB) of these species. We present several examples in our study where the RNA‐Seq evidence can help in correction of the current gene model and can help in discovery of potential new genes

    Investigating the effect of oblique image acquisition on the accuracy of QSM and a robust tilt correction method

    Get PDF
    PURPOSE: Quantitative susceptibility mapping (QSM) is used increasingly for clinical research where oblique image acquisition is commonplace, but its effects on QSM accuracy are not well understood. THEORY AND METHODS: The QSM processing pipeline involves defining the unit magnetic dipole kernel, which requires knowledge of the direction of the main magnetic field B ^ 0 B^0 {\hat{\boldsymbol{B}}}_{\mathbf{0}} with respect to the acquired image volume axes. The direction of B ^ 0 B^0 {\hat{\boldsymbol{B}}}_{\mathbf{0}} is dependent on the axis and angle of rotation in oblique acquisition. Using both a numerical brain phantom and in vivo acquisitions in 5 healthy volunteers, we analyzed the effects of oblique acquisition on magnetic susceptibility maps. We compared three tilt-correction schemes at each step in the QSM pipeline: phase unwrapping, background field removal and susceptibility calculation, using the RMS error and QSM-tuned structural similarity index. RESULTS: Rotation of wrapped phase images gave severe artifacts. Background field removal with projection onto dipole fields gave the most accurate susceptibilities when the field map was first rotated into alignment with B ^ 0 B^0 {\hat{\boldsymbol{B}}}_{\mathbf{0}} . Laplacian boundary value and variable-kernel sophisticated harmonic artifact reduction for phase data background field removal methods gave accurate results without tilt correction. For susceptibility calculation, thresholded k-space division, iterative Tikhonov regularization, and weighted linear total variation regularization, all performed most accurately when local field maps were rotated into alignment with B ^ 0 B^0 {\hat{\boldsymbol{B}}}_{\mathbf{0}} before susceptibility calculation. CONCLUSION: For accurate QSM, oblique acquisition must be taken into account. Rotation of images into alignment with B ^ 0 B^0 {\hat{\boldsymbol{B}}}_{\mathbf{0}} should be carried out after phase unwrapping and before background-field removal. We provide open-source tilt-correction code to incorporate easily into existing pipelines: https://github.com/o-snow/QSM_TiltCorrection.git

    Imaging characteristics of H3 K27M histone-mutant diffuse midline glioma in teenagers and adults

    Get PDF
    Background: To assess anatomical and quantitative diffusion-weighted MR imaging features in a recently classified lethal neoplasm, H3 K27M histone-mutant diffuse midline glioma [World Health Organization (WHO) IV]. / Methods: Fifteen untreated gliomas in teenagers and adults (median age 19, range, 14–64) with confirmed H3 K27M histone-mutant genotype were analysed at a national referral centre. Morphological characteristics including tumour epicentre(s), T2/FLAIR and Gadolinium enhancement patterns, calcification, haemorrhage and cyst formation were recorded. Multiple apparent diffusion coefficient (ADCmin, ADCmean) regions of interest were sited in solid tumour and normal appearing white matter (ADCNAWM) using post-processing software (Olea Sphere v2.3, Olea Medical). ADC histogram data (2nd, 5th, 10th percentile, median, mean, kurtosis, skewness) were calculated from volumetric tumour segmentations and tested against the regions of interest (ROI) data (Wilcoxon signed rank test). / Results: The median interval from imaging to tissue diagnosis was 9 (range, 0–74) days. The structural MR imaging findings varied between individuals and within tumours, often featuring signal heterogeneity on all MR sequences. All gliomas demonstrated contact with the brain midline, and 67% exhibited rim-enhancing necrosis. The mean ROI ADCmin value was 0.84 (±0.15 standard deviation, SD) ×10−3 mm2/s. In the largest tumour cross-section (excluding necrosis), an average ADCmean value of 1.12 (±0.25)×10−3 mm2/s was observed. The mean ADCmin/NAWM ratio was 1.097 (±0.149), and the mean ADCmean/NAWM ratio measured 1.466 (±0.299). With the exception of the 2nd centile, no statistical difference was observed between the regional and histogram derived ADC results. / Conclusions: H3 K27M-mutant gliomas demonstrate variable morphology and diffusivity, commonly featuring moderately low ADC values in solid tumour. Regional ADC measurements appeared representative of volumetric histogram data in this study

    World Health Organization Grade II/III Glioma Molecular Status: Prediction by MRI Morphologic Features and Apparent Diffusion Coefficient

    Get PDF
    BACKGROUND: A readily implemented MRI biomarker for glioma genotyping is currently lacking. PURPOSE: To evaluate clinically available MRI parameters for predicting isocitrate dehydrogenase (IDH) status in patients with glioma. MATERIALS AND METHODS: In this retrospective study of patients studied from July 2008 to February 2019, untreated World Health Organization (WHO) grade II/III gliomas were analyzed by three neuroradiologists blinded to tissue results. Apparent diffusion coefficient (ADC) minimum (ADC_{mi}) and mean (ADC_{mean}) regions of interest were defined in tumor and normal appearing white matter (ADC_{NAWM}). visual rating of anatomic features (T1 weighted, T1 weighted with contrast enhancement, T2 weighted, and fluid-attenuated inversion recovery) was performed. Interobserver comparison (intraclass correlation coefficient and Cohen κ) was followed by nonparametric (Kruskal-Wallis analysis of variance) testing of associations between ADC metrics and glioma genotypes, including Bonferroni correction for multiple testing. Descriptors with sufficient concordance (intraclass correlation coefficient, >0.8; κ > 0.6) underwent univariable analysis. Predictive variables (P < .05) were entered into a multivariable logistic regression and tested in an additional test sample of patients with glioma. RESULTS: he study included 290 patients (median age, 40 years; interquartile range, 33–52 years; 169 male patients) with 82 IDH wild-type, 107 IDH mutant/1p19q intact, and 101 IDH mutant/1p19q codeleted gliomas. Two predictive models incorporating ADC_{mean}-to-ADC_{NAWM} ratio, age, and morphologic characteristics, with model A mandating calcification result and model B recording cyst formation, classified tumor type with areas under the receiver operating characteristic curve of 0.94 (95% confidence interval [CI]: 0.91, 0.97) and 0.96 (95% CI: 0.93, 0.98), respectively. In the test sample of 49 gliomas (nine IDH wild type, 21 IDH mutant/1p19q intact, and 19 IDH mutant/1p19q codeleted), the classification accuracy was 40 of 49 gliomas (82%; 95% CI: 71%, 92%) for model A and 42 of 49 gliomas (86%; 95% CI: 76%, 96%) for model B. CONCLUSION: Two algorithms that incorporated apparent diffusion coefficient values, age, and tumor morphologic characteristics predicted isocitrate dehydrogenase status in World Health Organization grade II/III gliomas on the basis of standard clinical MRI sequences alone

    Going places

    Get PDF
    Journeys. We all make them. Often they take us to exotic places. Sometimes they take us even further. They might take us through time. Or they might take us into a new way of life. There are times too, when we go all over the world and back again only to find that home is, after all, where it’s all happening. This book contains stories about many different types of journey. We hope you will enjoy travelling into it and finding a world that suits you

    Filtration‐histogram based magnetic resonance texture analysis (Mrta) for the distinction of primary central nervous system lymphoma and glioblastoma

    Get PDF
    Primary central nervous system lymphoma (PCNSL) has variable imaging appearances, which overlap with those of glioblastoma (GBM), thereby necessitating invasive tissue diagnosis. We aimed to investigate whether a rapid filtration histogram analysis of clinical MRI data supports the distinction of PCNSL from GBM. Ninety tumours (PCNSL n = 48, GBM n = 42) were analysed using pre‐treatment MRI sequences (T1‐weighted contrast‐enhanced (T1CE), T2‐weighted (T2), and apparent diffusion coefficient maps (ADC)). The segmentations were completed with proprietary texture analysis software (TexRAD version 3.3). Filtered (five filter sizes SSF = 2–6 mm) and unfil-tered (SSF = 0) histogram parameters were compared using Mann‐Whitney U non‐parametric test-ing, with receiver operating characteristic (ROC) derived area under the curve (AUC) analysis for significant results. Across all (n = 90) tumours, the optimal algorithm performance was achieved using an unfiltered ADC mean and the mean of positive pixels (MPP), with a sensitivity of 83.8%, specificity of 8.9%, and AUC of 0.88. For subgroup analysis with >1/3 necrosis masses, ADC permit-ted the identification of PCNSL with a sensitivity of 96.9% and specificity of 100%. For T1CE‐derived regions, the distinction was less accurate, with a sensitivity of 71.4%, specificity of 77.1%, and AUC of 0.779. A role may exist for cross‐sectional texture analysis without complex machine learning models to differentiate PCNSL from GBM. ADC appears the most suitable sequence, especially for necrotic lesion distinction

    Prevalence of acute dizziness and vertigo in cortical stroke

    Get PDF
    BACKGROUND: In posterior circulation stroke, vertigo can be a presenting feature. However, whether isolated hemispheric strokes present with vertigo is less clear, despite a few single case-reports in the literature. Here we, a) explored the prevalence of vertigo/dizziness in acute stroke and, b) considered the cortical distribution of these lesions in relation to both the known vestibular cortex and evolution of these symptoms. METHODS: We conducted structured interviews in 173 consecutive unselected patients admitted to the hyperacute stroke unit at the University College London Hospitals. The interview was used to evaluate whether the patient was suffering from dizziness and/or vertigo before the onset of the stroke and at the time of the stroke (acute dizziness/vertigo), and the nature of these symptoms. RESULTS: 112 patients had subcortical lesions and 53 patients had cortical infarcts, of which 21 patients reported acute dizziness. Out of these 21, five patients reported rotational vertigo. 17 of the total 53 patients had lesions in known vestibular cortical areas distributed within the insular and parietal opercular cortices. CONCLUSIONS: The prevalence of vertigo in acute cortical strokes was 9%, with no single locus of lesion overlap. There is growing evidence supporting a lateralised vestibular cortex, with speculation that cortical strokes affecting the right hemisphere, are more likely to cause vestibular symptoms than left-hemispheric strokes. We observed a trend for this association, with the right hemisphere affected in four of five patients who reported spinning vertigo at the onset of the stroke

    Microstructural Imaging in Temporal Lobe Epilepsy: Diffusion Imaging Changes Relate to Reduced Neurite Density

    Get PDF
    Purpose: Previous imaging studies in patients with refractory temporal lobe epilepsy (TLE) have examined the spatial distribution of changes in imaging parameters such as diffusion tensor imaging (DTI) metrics and cortical thickness. Multi-compartment models offer greater specificity with parameters more directly related to known changes in TLE such as altered neuronal density and myelination. We studied the spatial distribution of conventional and novel metrics including neurite density derived from NODDI (Neurite Orientation Dispersion and Density Imaging) and myelin water fraction (MWF) derived from mcDESPOT (Multi-Compartment Driven Equilibrium Single Pulse Observation of T1/T2)] to infer the underlying neurobiology of changes in conventional metrics. / Methods: 20 patients with TLE and 20 matched controls underwent magnetic resonance imaging including a volumetric T1-weighted sequence, multi-shell diffusion from which DTI and NODDI metrics were derived and a protocol suitable for mcDESPOT fitting. Models of the grey matter-white matter and grey matter-CSF surfaces were automatically generated from the T1-weighted MRI. Conventional diffusion and novel metrics of neurite density and MWF were sampled from intracortical grey matter and subcortical white matter surfaces and cortical thickness was measured. / Results: In intracortical grey matter, diffusivity was increased in the ipsilateral temporal and frontopolar cortices with more restricted areas of reduced neurite density. Diffusivity increases were largely related to reductions in neurite density, and to a lesser extent CSF partial volume effects, but not MWF. In subcortical white matter, widespread bilateral reductions in fractional anisotropy and increases in radial diffusivity were seen. These were primarily related to reduced neurite density, with an additional relationship to reduced MWF in the temporal pole and anterolateral temporal neocortex. Changes were greater with increasing epilepsy duration. Bilaterally reduced cortical thickness in the mesial temporal lobe and centroparietal cortices was unrelated to neurite density and MWF. / Conclusions: Diffusivity changes in grey and white matter are primarily related to reduced neurite density with an additional relationship to reduced MWF in the temporal pole. Neurite density may represent a more sensitive and specific biomarker of progressive neuronal damage in refractory TLE that deserves further study
    corecore